1,961 research outputs found

    Optimal regularity of minimal graphs in the hyperbolic space

    Full text link
    We discuss the global regularity of solutions ff to the Dirichlet problem for minimal graphs in the hyperbolic space when the boundary of the domain Ω⊂Rn\Omega\subset\mathbb R^n has a nonnegative mean curvature and prove an optimal regularity f∈C1n+1(Ωˉ)f\in C^{\frac{1}{n+1}}(\bar{\Omega}). We can improve the H\"older exponent for ff if certain combinations of principal curvatures of the boundary do not vanish, a phenomenon observed by F.-H. Lin.Comment: Accepted by Calc. Var. Partial Differential Equation

    Optimal Relay Selection for Physical-Layer Security in Cooperative Wireless Networks

    Full text link
    In this paper, we explore the physical-layer security in cooperative wireless networks with multiple relays where both amplify-and-forward (AF) and decode-and-forward (DF) protocols are considered. We propose the AF and DF based optimal relay selection (i.e., AFbORS and DFbORS) schemes to improve the wireless security against eavesdropping attack. For the purpose of comparison, we examine the traditional AFbORS and DFbORS schemes, denoted by T-AFbORS and TDFbORS, respectively. We also investigate a so-called multiple relay combining (MRC) framework and present the traditional AF and DF based MRC schemes, called T-AFbMRC and TDFbMRC, where multiple relays participate in forwarding the source signal to destination which then combines its received signals from the multiple relays. We derive closed-form intercept probability expressions of the proposed AFbORS and DFbORS (i.e., P-AFbORS and P-DFbORS) as well as the T-AFbORS, TDFbORS, T-AFbMRC and T-DFbMRC schemes in the presence of eavesdropping attack. We further conduct an asymptotic intercept probability analysis to evaluate the diversity order performance of relay selection schemes and show that no matter which relaying protocol is considered (i.e., AF and DF), the traditional and proposed optimal relay selection approaches both achieve the diversity order M where M represents the number of relays. In addition, numerical results show that for both AF and DF protocols, the intercept probability performance of proposed optimal relay selection is strictly better than that of the traditional relay selection and multiple relay combining methods.Comment: 13 page

    Physical-Layer Security with Multiuser Scheduling in Cognitive Radio Networks

    Full text link
    In this paper, we consider a cognitive radio network that consists of one cognitive base station (CBS) and multiple cognitive users (CUs) in the presence of multiple eavesdroppers, where CUs transmit their data packets to CBS under a primary user's quality of service (QoS) constraint while the eavesdroppers attempt to intercept the cognitive transmissions from CUs to CBS. We investigate the physical-layer security against eavesdropping attacks in the cognitive radio network and propose the user scheduling scheme to achieve multiuser diversity for improving the security level of cognitive transmissions with a primary QoS constraint. Specifically, a cognitive user (CU) that satisfies the primary QoS requirement and maximizes the achievable secrecy rate of cognitive transmissions is scheduled to transmit its data packet. For the comparison purpose, we also examine the traditional multiuser scheduling and the artificial noise schemes. We analyze the achievable secrecy rate and intercept probability of the traditional and proposed multiuser scheduling schemes as well as the artificial noise scheme in Rayleigh fading environments. Numerical results show that given a primary QoS constraint, the proposed multiuser scheduling scheme generally outperforms the traditional multiuser scheduling and the artificial noise schemes in terms of the achievable secrecy rate and intercept probability. In addition, we derive the diversity order of the proposed multiuser scheduling scheme through an asymptotic intercept probability analysis and prove that the full diversity is obtained by using the proposed multiuser scheduling.Comment: 12 pages. IEEE Transactions on Communications, 201

    Intercept Probability Analysis of Cooperative Wireless Networks with Best Relay Selection in the Presence of Eavesdropping Attack

    Full text link
    Due to the broadcast nature of wireless medium, wireless communication is extremely vulnerable to eavesdropping attack. Physical-layer security is emerging as a new paradigm to prevent the eavesdropper from interception by exploiting the physical characteristics of wireless channels, which has recently attracted a lot of research attentions. In this paper, we consider the physical-layer security in cooperative wireless networks with multiple decode-and-forward (DF) relays and investigate the best relay selection in the presence of eavesdropping attack. For the comparison purpose, we also examine the conventional direct transmission without relay and traditional max-min relay selection. We derive closed-form intercept probability expressions of the direct transmission, traditional max-min relay selection, and proposed best relay selection schemes in Rayleigh fading channels. Numerical results show that the proposed best relay selection scheme strictly outperforms the traditional direct transmission and max-min relay selection schemes in terms of intercept probability. In addition, as the number of relays increases, the intercept probabilities of both traditional max-min relay selection and proposed best relay selection schemes decrease significantly, showing the advantage of exploiting multiple relays against eavesdropping attack.Comment: 5 pages. arXiv admin note: substantial text overlap with arXiv:1305.081
    • …
    corecore